Proof of Cayley-Hamilton theorem using polynomials over the algebra of module endomorphisms

نویسندگان

چکیده

If R is a commutative unital ring and M R-module, then each element of EndR(M) determines left EndR(M)[X]-module structure on EndR(M), where the R-algebra endomorphisms EndR(M)[X]=EndR(M)⊗RR[X]. These structures provide very short proof Cayley-Hamilton theorem, which may be viewed as reformulation in Algebra by Serge Lang. Some generalisations theorem can easily proved using proposed method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proof of the Cayley-Hamilton Theorem

Let M (n, n) be the set of all n × n matrices over a commutative ring with identity. Then the Cayley Hamilton Theorem states: Theorem. Let A ∈ M (n, n) with characteristic polynomial det(tI − A) = c 0 t n + c 1 t n−1 + c 2 t n−2 + · · · + c n. Then c 0 A n + c 1 A n−1 + c 2 A n−2 + · · · + c n I = 0. In this note we give a variation on a standard proof (see [1], for example). The idea is to use...

متن کامل

On a Diagrammatic Proof of the Cayley-hamilton Theorem

This note concerns a one-line diagrammatic proof of the CayleyHamilton Theorem. We discuss the proof’s implications regarding the “core truth” of the theorem, and provide a generalization. We review the notation of trace diagrams and exhibit explicit diagrammatic descriptions of the coefficients of the characteristic polynomial, which occur as the n + 1 “simplest” trace diagrams. We close with ...

متن کامل

The Cayley-Hamilton theorem

Theorem 1. Let A be a n × n matrix, and let p(λ) = det(λI − A) be the characteristic polynomial of A. Then p(A) = 0.

متن کامل

The Cayley-Hamilton Theorem

This document contains a proof of the Cayley-Hamilton theorem based on the development of matrices in HOL/Multivariate Analysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2022

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2022.03.012